Thursday, 31 March 2011

Resolution

Resolution is given in layer thickness and X-Y resolution in dpi. Typical layer thickness is around 100 micrometres (0.1 mm), while X-Y resolution is comparable to that of laser printers. The particles (3D dots) are around 50 to 100 micrometres (0.05-0.1 mm) in diameter.

 

Applications

Standard applications include design visualization, prototyping/CAD, metal casting, architecture, education, geospatial, healthcare and entertainment/retail. Other applications would include reconstructing fossils in paleontology, replicating ancient and priceless artifacts in archaeology, reconstructing bones and body parts in forensic pathology and reconstructing heavily damaged evidence acquired from crime scene investigations.
More recently, the use of 3D printing technology for artistic expression has been suggested.Artists have been using 3D printers in various ways.



3D printing technology is currently being studied by biotechnology firms and academia for possible use in tissue engineering applications where organs and body parts are built using inkjet techniques. Layers of living cells are deposited onto a gel medium and slowly built up to form three dimensional structures. Several terms have been used to refer to this field of research: Organ printing, bio-printing, and computer-aided tissue engineering among others.3D printing can produce a personalised hip replacement in one pass, with the ball permanently inside the socket, and even at current printing resolutions the unit will not require polishing.
The use of 3D scanning technologies allow the replication of real objects without the use of molding techniques, that in many cases can be more expensive, more difficult, or too invasive to be performed; particularly with precious or delicate cultural heritage artifacts where the direct contact of the molding substances could harm the surface of the original object.

7 comments: